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Ahetrm--The hydrodynamically induced cross-stream migration of a nonlinear elastic dumbbell in non- 
homogeneous flows is considered. A generally valid expression for the migration velocity is derived and the 
result applied to viscometric flows. Effects of elasticity and size of the particle, as well as the strength of 
the flow field, are studied in detail for channel flow and for circular Couette flow. Estimates of the dynamics 
of developments of non-uniform concentration profiles are discussed. 

1. INTRODUCTION 

Essentially all flow fields of practical interest involve non-homogeneous flows, i.e. flows, for 
which the velocity gradients vary spatially over the domain of interest. To know if and to what 
extent suspended particles or macromolecules migrate systematically across streamlines is 
therefore of great importance. Such behavior would not only affect the rheology and the 
engineering of polymer solutions and suspensions but also influence processes such as heat and 
mass exchange between the suspension or solution and the bounding walls. There is a growing 
body of experimental evidence that such cross-stream migration: (i) may be important in flows 
of polymer solutions through porous media (Aubert et al. 1980); (li) leads to molecular 
fractionation in tube flow (Busse 1964, Schreiber et al. 1965); and (ill) is responsible for the 
decrease of the apparent viscosity with decreasing dimensions of the viscometer (Kemblowski 
1969, Porter et al. 1966). 

Furthermore, the decay in the degree of extrudate swelling with increasing die length also 
has been attributed to the cross-stream migration (Schreiber et al. 1966). Finally, more on a 
laboratory scale we mention chromatography experiments (Quano et al. 1971), slip in gravity 
flow along an inclined plane (Astarita et al. 1964; Therien et al. 1970) the Uhlenhopp effect 
(Sharer et aL 1974) and the radial migration of droplets (Goldsmith et al. 1962). 

By carefully examining all of these different experimental results two common features are 
detected: first of all, the particles or macromolecules in question are nonrigid (i.e. deformable) 
and secondly the flow field clearly is non-homogeneous. 

It is the purpose of this communication to take these two features into consideration by 
analyzing the hydrodynamics of one particular system: a nonlinear elastic dumbbell with 
unstretched length Lo. This kind of particle mimics some features of dissolved macromolecules 
(Bird et al. 1977) and is simple enough to be treated in detail, yet rich enough to furnish 
information about various effects. Besides the influence of non-zero length Lo we mention 
spring-stiffness (fast elastic response), finite and nonlinear extensibility (up to the limit of a rigid 
dumbbell), and weak and strong flow fields. Furthermore, as soon as the hydrodynamics is fully 
understood one can rigorously formulate a statistical mechanical treatment of a suspension of 
such particles. The present work represents a first step in that direction. 

In section two we shall formulate the problem mathematically and derive, for the particles at 
hand, a general result, i.e. one which is valid in arbitrary non-homogeneous flows. This will then 
be applied to channel flow (section 3) and to circular Couette flow (section 4). Finally, in section 
five the results will be discussed and general conclusions will be drawn. 

tParts of this paper have been presented at the 1981 AIChE Annual Meeting, New Orleans, Louisiana, 9-12 November 
1981. 
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2. F O R M U L A T I O N  OF THE P R O B L E M  

The particle considered in this study consists of two identical spheres (radius a) joined by 
some kind of nonbendable, frictionless spring. If r~ is the instantaneous position vector of the 
center of sphere i, i-- l, 2, then R = r2-r~ specifies the actual configu afion (see figure 1). The 
force law for the spring, i.e. the force F ~ on sphere "2" due to tension in the connector will be 
collinear with R and we write 

dO^ 
r = F*I~ = - ~ R ,  [2.1] 

where • = O([R[) is the connector potential. 
Moving through the fluid, each sphere will experience a hydrodynamic force Fi and a torque 

Gi, i = 1, 2. If 

dO 
!~. (F2- FO - 2 ~ "  = O, [2.2a] 

F --- Fi + F2 = 0, [2.2b] 

Gc = 0, [2.2c] 

where F is the net (total) hydrodynamic force and Gc the net total torque (relative to the center 
r~), the dumbbell is said to be freely suspended. From these equations, the state of motion of 
the dumbbell, i.e. the translation of the center (velocity /'c), the rotation around the center 
(angular velocity w) and the vibration of the spring (characterized by/~, the change in length) 
can be deduced. This requires that we know the relation between the "forces" F, G¢ & 11. (F~ - FI) 
and the "momenta" i'o w & R. 

To this end we assume that V °, the undisturbed and prescribed flow field in the vicinity of 
the particle is of the form 

V°(r) = V ° + ( r -  r~)" E~ + IL x ( r -  r~) + ~ ( r -  rc)(r- r,):r¢ [2.3] 

In this equation, the velocity V °, the rate of strain dyadic Eo the vorticity vector 2~c and the 
second order velocity gradient Fc are all evaluated at the center r~. The quadradic variation of 
"C°(r) with position need not be valid everywhere, as in channel flow or tube flow, but only in 
the vicinity of the particle. If we then assume that the Reynolds number based on particle 
dimensions is very small, the velocity-pressure disturbances caused by the dumbbell satisfy the 
Stokes-equations, which are linear. Thus, ff the spring force F ~ is such as to guarantee that the 
two spheres are far apart at each instant, the method of reflections can be employed. This 

Figure 1. The elastic dumbbell. 
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method has received considerable attention in the literature and we use the general recursion 
formulas for the (j + 1)st reflection in terms of the jth reflection of Brunn (1980). After 3 
reflections (the third one only partially in order to get consistent (a/R)-terms) the result reads 

1 l a 3 -  ^ 8 - 5 . . . . .  0 
[2.3a] 

[2.3b] 

~ 2FC (1 3 a R = [2.3c1 

We should point out that in [2.3a] the terms neglected are of order (a/R) 4, while for the 
internal motion, i.e. for [2.3b] and [2.3c] the error terms are of order (a/R) 3. The friction 
coefficient stands for 6~r/a. It is interesting to see that up to terms of order (adR) 3 the second 
order velocity gradient (a measure of the inhomogeneity of the flow field) directly affects only 
the translation and not the rotation-vibration. For homogeneous flows (I', = 0), we have 
~, = V °, i.e. the dumbbell moves with the fluid. This, in turn, implies that in homogeneous flows 
none of the effects talked about in the introduction is possible. 

On the other hand a migration relative to the imposed flow field is predicted by [2.3a] for 
non-homogenous flow fields. The actual value of the migration velocity, rc - V °,  depends upon 
the instantaneous particle vector R, and the time rate of change of R itself depends--through 
lie and Ec--upon r,. In order to see whether a net migration or merely a fluctuation around V ° 
(without a net-migration) is predicted by [2.3], we first consider [2.3b] and [2.3c] in more detail. 

Putting, with respect to an arbitrary cartesian base system (unit vectors B~, i -- 1.2.3) 

R = R[sin O cos 48, + sin O sin q,82+ cos O~], [2.41 

and realizing that 

!~ = w x R + RI~, [2.5] 

we obtain from (2.3b) 

16 5] 
[2.6a] 

sinO6 = -  O • llc + [ 1 - ~  (R)2]~*:Ec. [2.6b] 

Here the unit vectors (O, &, !~) are the orthogonal unit vectors for spherical polar coordinates. 
So far, essentially no restrictions have been imposed upon the flow field. In order to proceed 

further we focus attention on viscometric flows, i.e. flows for which the velocity gradient 
relative to the orthogonal shear axes 8~ (i -- 1, 2, 3) is given by (e.g. Bird et al. 1977) 

O,C0(r)],, = qcg~,, [2.71 

with qc the local shear rate. Associating instantaneously g~ with B, (i = 1, 2, 3) furnishes 

0 = q ~ [ l - ~  (R)2] sin O cos O sin 6 cos q~, [2.8a] 
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8 8 ~}, d~= - qc{[l - ~ (R)2] sin2 6 + ~ (R)2 cos 2 [2.8b] 

2F~ (1 3 a = Rqc sin 2 O sin ~ cos ~b + ~ - ~ ~) .  [2.8c] 

By [2.8b] the time rate of change of the azimuthal angle qb is strictly one-sided (i.e. d X 0 if 
qc ~:0). Thus ~ uniformly increases or decreases and this implies a rotation of the particle 
around the g3 axis. On the other hand, the polar angle O changes according to 

d [In tan O] = - [1 - (1613)(a/R) 2] cos ~ sin 
d-~ [1 - (8/3)(a/R) 2] sin 2 4) + (S/3)(alR) 2 cos 2 4)" 

[2.9] 

This equation, which is independent of the position rc can be solved in two cases. 

Case I: rigid dumbbell 

In this case R does not change and [2.8a] merely serves to determine the connector force F c. 
From [2.9] we get 

8 a 2 8 a ~ 4,] ~/2 
tan O[(1 - ~  ( ~ ) )  sin2 ~ +~ ( ~ )  cos 2 -- coast.-- C. [2.10a] 

Thus the orientation after one rotation (i.e. for a change of ~ of 2Ir) coincides with the initial 
orientation (the orbit constant C stays constant). We shall see that for the flow fields studied, 
this implies that rc for a rigid dumbbell merely fluctuates periodically across stream lines 
without any net migration. The period T of rotation is given by 

f: dtlq l-- =R [2.10b] 

Case 2: no hydrodynamic interaction 
Without any hydrodynamic interaction the terms (a/R) will all be zero. This leads to the 

aperiodic behavior 

tan O sin ~ = const. [2.11] 

The terminal orientation ultimately attained by the dumbbell is 4)= = 0, 0® = (w/2), i.e. alignment 
in the flow direction. Thus, although we have always assumed the dumbbell to be large (aiR 
small), the limit a/R = 0 should not be taken: by destroying the periodicity inherent in [2.8a/b] 
it is totally atypical (and physically meaningless). 

In order to make sure that hydrodynamic interaction is small (but non-zero), the beads have 
to be far apart. Thus, if we consider an elastic dumbbell (spring constant H) of unstretched 
length Lo, we not only have to require Le/a ~" 1, but we have to make sure that with a finite 
force the dumbbell cannot be compressed beyond a certain limit. This requires a non-linear 
force law and we choose 

F~=-H R;LL,  z,2Lo-LI<R<L ~ [2.12] 

where LI is the length of the fully extended spring. Figure 2 illustrates our choice. 



HYDRODYNAMICALLY INDUCED CROSS STREAM MIGRATION OF DL~LVED MACROMOLECULES 191 

R* 
Figure 2. The Interaction potential O, (FClHLo) = - (dO/dR*) for the dumbbell with non-zero unstretched 

length L~ 

We should point out that various special limits of F c have successfully been employed in 
connection with kinetic theory treatments of dissolved macromolecules. Fo r / 0 - ,  0 and LI--, oo 
the widely used Hookean dumbbell (Gaussian spring) results. On the other hand, with/0-*0 
and finite Lt one obtains the force law characteristic of finitely extendable nonlinear elastic 
dumbbells (FENE dumbbells), first used for kinetic theory calculations by Warner. Finally, for 
non-zero Lo but LI--,® the Fraenkel dumbbell is recovered, which accounts (crudely) for 
excluded volume effects (see Bird et al. 1977 for details on Warner and all the other various 
models). Thus, as far as macromolecnles are concerned, the force law [2.12] takes excluded 
volume effects and finite extensibility of the chain into consideration. 

As long as the length 2 / o - L t  is larger than the sphere diameter 2a, hydrodynamic 
interaction will be small. This then allows us to retain nothing but the dominant (a/R) terms in 
[2.8] (such that we still have a periodic motion). If qo denotes the magnitude of the maximum 
value of qc, we introduce dimensionless quantifies 

4H 
qc = qc/ qo, i=  qot, d =  ~qo' 

R, = L~, L,_L__! a_ 
- / 0 ,  a*=/0 ,  

[2.13] 

to obtain 

d o  = ~]c sin 0 cos 0 sin ~ cos ~, [2.14a] 
dt 

d [sin 2 - 8/a*XZcos2~] ' [2.14b] 

I R * - I  
d R *  = R*~ sin20 sin ~ cos 0 - ~  ,~. /R* - 1\ ~ [2.14c] 
dt 

The parameter 6 stands for the ratio of two characteristic time scales: qo ~ is a characteristic 
time of the flow field (and for the particle rotation) and 04H is a time constant for the dumbbell 
characteristic vibration time. The meaning of all other dimensionless quantities is obvious. Note 
that these equations imply that the time scale for changes in R* is governed by the shear rate. 
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Since qc depends upon position, we know 

R* = R*(t, F,; a*, L*, 6), [2.15] 

where F~ is the dimensionless position of the center of mass (scaled with some length B 
characteristic for the flow). 

On a dimensionless basis, some progress can even be made for the migration velocity i'c 
without specifying the flow field in detail. Since (a/0r)ll~ and (0/ar)E~ can all be written as 
second order derivatives of V ° and since/'c - Vc ° depend linearly on these derivatives, [2.3a] is 
of the form 

d 
d-t rc = V ° + KLo2f(R *, a*), [2.161 

where the vector function f is dimensionless. In this equation K is a measure of the curvature 
of the flow field, i.e. of the second order derivatives of V °. Scaling rc with a characteristic flow 
dimension B, [2.16] becomes 

d#c 1 o t 
d i  = K'Lo 2V* +fiR*, a*), f = ~ [2.171 

with 

21 
tm = K-'--B' [2.181 

the time scale for migration. Thus, in constrast to the time dependent behavior of the 
orientation, for which the time scale is governed by the shear rate, the curvature of the flow 
field and the length of the particle dictate the time scale for migration. Since the particle length 
enters as (Lo/B) 2, it is quite clear that larger particles will be heavily favored in the migration. 

For example, for tube flow (B = tube radius, rm = fluid velocity at tube axis) we take 
K = (2vm/B 2) to obtain 

8 3 
tm =2Lo--L-~v~" [2.191 

Thus, a decrease in the time for migration can be achieved by decreasing the tube radius, 
increasing the size of the particles and increasing the fluid velocity. Reducing B is the most 
effective means while increasing v,, the least effective means to achieve that. It is interesting 
that the same conclusion has already been reached by purely thermodynamic arguments for the 
case of polymer fractionation (Tirrell & Malone 1977). 

Since for tube flow we have qo = 2(vm/B), a particle will have undergone many rotations 
within the time interval t,. Actually this is valid for any flow since the relation between [ and f 
is 

i=  2i, 

with 
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As long as we regard second order derivatives of the velocity field V ° as spatially constant, 
the analysis simplifies considerably, the reason being that in this case q~ will be a linear 
function of position. RescaHng our variables by putting 

1 . rc [2.21a] 

t* = /3i = /3qot, [2.21b] 

leaves (2.17) unchanged 

drc* 1 o 
dr* = ~ - K  V~ + f(R*, a*), [2.22] 

and leads to 

1 
qc* = 7 ¢]¢. [2.23] 

P 

If we then introduce a* by 

a * = ~ 6 ,  [2.24] 

all three equations [2.14a-c] can be used if ti, ~c and /" are replaced by a*, qc* and t*, 
respectively. Recalling [2.15] we thus see that the function f of [2.22], which governs the 
cross-stream migration depends only upon the parameters a*, L* and a* (besides t* and r~*). 
The curvature of the flow field and the size of the particle relative to the size of the system no 
longer appear explicitly. 

3. UI~IDI~.CTIONAL FLOW 

The velocity field for unidirectional motion is given by 

V°(r) = {Ao + AIx2 + A2X22}~I. [3.1] 

We shah concentrate on channel flow between two planes at a distance 2B apart. Taking the 
midplane as the zero of the x2-coordinate, we get Ao = vm, the maximum (or centerline) speed, 
At = 0 and A2 = - v d B  2. Furthermore, we have qo--2vdB and K = 2vdB  2, i.e. /3 = LolB. 
Since no confusion is possible, we drop the subscript c on quantities evaluated at the center 
and thus write qc*-- -x2* = -x21Lo. This expression has to be used in [2.14] for the starred 
quantities. In order to obtain x2*, [2.3a] has to be solved. Explicitly, it reads in dimensionless 
form 

d a .3  • 2 
dr* x2* = ~ s m  O sin 4' cos  4, [1 - 5 sin 2 0  sin 2 4,]. [3.2] 

Thus, in unidirectional flow a migration across stream-lines requires hydrodynamically 
interacting beads. By [2.14], we know that the azimuthal angle 4, continuously increases 
(x2* > 0). This means that the particle axis rotates with period T*, defined such that 4, changes 
by 2,r during the time interval T*.t This being the case, the four coupled equations, [2.14a-c] 

tNote that T* changes during the course of the migration as it depends upon the local shear rate q~*. 
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and [3.2], have to be solved simultaneously in order to ascertain whether or not a net migration 
does indeed result. 

There is one exception where we know the answer. This concerns a rigid dumbbell where 
the 0-& relation is known (see [2.10]). With R* the constant length of the dumbbell, we can 
combine [3.2] with [2.9] and [2.13hi to obtain an ordinary first order differential equation for 
x2* = x2'(¢) of the form 

d-~X2 .2 - f(~). 

Since f(O) so defined has the property f(2~- -+ ~) = -+f(4'), we immediately see that there is no 
net migration during one complete rotation (although the dumbbell fluctuates back and forth 
across a streamline).t Elasticity (or deformability) and hydrodynamic interaction are two 
prerequisites for any hydrodynamically induced cross-stream migration of dumbbells in 
nonuniform unidirectional flows. With R* -- 1, the period of rotation R* is thus (see [2.10b]) 

3 11- 

For the general case, a numerical integration of [2.14a--c] and [3.2] is in order. Choosing 
values for the three parameters a*, L*, and a*, the quantities ~, 0, R*, and x2* can be 
evaluated. Although the numerous results obtained depend upon the parameters and upon the 
initial conditions, they share one thing in common: during the course of one rotation the particle 
center fluctuates back and forth across a streamline. The eight stationary points of x2* are 
characterized by any multiple of ~r12 and, for the case shown (0 = ir12), ~ being (n ---0.148)tr, 
where n is an integer. The fluctuations are unsymmetric with the final value of xz* (called x~ 1) 
being less than X~o (the initial value). This implies a net migration towards the channel axis (i.e. 
towards the region of low shear). Figure 3 shows a typical result. It is interesting to see that the 
actual period for a rotation is of the same order of magnitude as given by [3.3]. This implies that 
for a single rotation, the effect of variable qc* and R* on T* is small. 

Since without hydrodynamic interaction (a* =0) the dumbbell aligns with the flow 
(aperiodic motion) and does not show any cross-stream migration, we expect a decrease in the 
migration and an increase in the period of rotation if the interaction parameter a* is decreased. 
Figure 4 dramatically illustrates that point. 

x X~ 

0.4 

0 . 3 9 9 5  

0 .39  c 

0 . 3 9 8 5  
0 

\ 

4b 8b 
t" 

Figure 3. The migration of a dumbbell during one rotation in channel flow (the circles characterize 
x~r-x2*(T*), i.e. the value of x,* after one rotation) parameters: a*=0.1 ,  a*=0.1,  L*= 1.8; initial 

conditions: Oo = lr/2; ~ = (314)Ir; Ro* = 1; x ~  = 0.4. 

?Rigid particles of revolution lacking fore-aft symmetry would undergo a similar sinuous motion even in homogeneous 
flows (Brenner 1972). 
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From figures like these for multiple rotations, it becomes apparent that the initial value of ~b 

(called Oo) as well as Ro* (the initial value of R*) plays essentially no role at all. On the other 
hand, 0o (i.e. 0 at t* = 0) is important: for dumbbells with the initial polar angle ranging from 
zero to ~-/2, the corresponding migration uniformly increases from zero (for 0o = 0) to its 
maximum value (for 0o = ~-/2, i.e. dumbbells in the flow-shear plane).t It is due to this reason 
that explicit results are reported only for 0o = ~r/2. 

The parameter L* is a measure of the nonlinearity of the force law. Decreasing L* (i.e. 
increasing the nonlinearity) decreases the period of rotation (figure 5: T *  = 118 for L *  = 1.8 
compared to T* = 101 for L*=  1.15). At the same time, the net migration increases and the 
actual fluctuations decrease. Apparently the reason is that a dumbbell with L* large passes 
more slowly (faster) through orientations corresponding to its maximum extension (com- 
pression) than one with a smaller L*. And for larger separation of the beads the hydrodynamic 
interaction is very small, an interaction which is needed in unidirectional flows for any net 
migration to occur. 

The influence of the parameter a* is shown in figure 6. While the period T* of rotation 
uniformly decreases with increasing a*, the net migration does not show such a one-to-one 
correspondence. For the three cases studied, the migration is least for 6" = 10, largest for 
a* = 1, and somewhere in between for a* -- 0.1. Such results can be comprehended if we look 
at the limits a*--,0 and a*-*~, respectively. For a*--, oo (e.g. very weak flows), we need R*--, 1 

0 . 4  ¸ 

×; 

0.39825 

0.3965 
0 5~0  1000 

t" 
Figure 4. The dependence of migration on the inverse aspect ratio a* (The period T* = 976 for dumbbells 
witha* = 0.01 as indicated by the circle), parameters: a* = 0.1, L* = 1.8; same initial conditions as in figure 

3, (a) solid: a * = 0.1; (b) dashed: a * = 0.01. 
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11 a 
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/"! / ,  
• i '  t ~ _ _  

I I  
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4'o 8'o ~ o  
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Figure 5. The dependence of migration on L* (the circle indicates one full rotation), parameters: a* =0.I,  
a '  = 0.I; same initial conditions as before, (a) solid line: L* = 1.8; Co) d u l ~ l :  L* = 1.15 (T* -- I0.I). 

t N o t e  also that  for  0 < 0.1481r, there  are only four  s ta t ionary points  in the x2* = x2*(t*) curve  during one 
rotation.  
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Figure 6. The dependence of migration on a* (each circle characterizes one full rotation for the 
corresponding dumbbell), parameters: a*--0.1, L* = 1.8; same initial conditions as before; (a) solid: 

a* = 0.1 (Y* = 118); (b) dashed: a* -- 1 (T* -- 98); (c) dotted: a* = 10 (T* = 96). 

(corresponding to freezing the spring into a rod). No net migration is possible in that case. On 
the other hand, for a*-~0 (e.g. very strong flows), the dumbbell rotates too fast for the spring 
to respond. Again, no net migration can result. Thus, the migration will be small for very small 
and for very large a* (i.e. when the elastic response time of the dumbbell and the characteristic 
time for rotation (inverse shear rate) differ drastically). 

Having established the dependence of the parameters on the cross-stream migration, we 
finally look at an actual particle trajectory. For the channel flow under consideration, dxl*/dt* 

increases with decreasing x2*. Consequently, dxe*[dxl* decreases with decreasing x2* (i.e. the 
net migration (as a function of axial distance travelled) decreases with decreasing distance from 
the axis (see figure 7)). Physically, this was to be expected. Recalling the remarks made at the 
end of the last section, it is not surprising that on the scale at which appreciable cross-stream 
migration takes place, the fluctuations do not show up at all. 

4. CIRCULAR COUETTE FLOW 

For circular Couette flow, i.e. the flow between two concentric cylinders with radii R, and 
R2, one of them steadily rotating with angular velocity t~ relative to the other, we have 

v ° :  ~(p)8. .  [4.11 

Here p is the radial coordinate measured from the common axis and to is given by 

[4.2a] 

~RI 2 
A = ~ .  [4.2b] 

We shall assume that the inner cylinder is rotating counterclockwise relative to the outer one 
(fl > 0), so that A is a positive constant. 

The shear axes are related to the cylindrical coordinate axes by 

~,=8,, ~2=a~, ~3 = -Sz, 

and relative to these axes the local shear rate is (Bird et al. 1977) 

dto - 2 AR22 
qc = P -~p = p2 , [4.31 
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I ×z 

0.8- 

0.4- 

o ib 2b 
lo-4×~ 

Figure 7. The actual particle trajectory for LdB = 112, parameters: a* = 0.05, (a* = 0.1), L* = i.8. 

i.e. 

{Rz~ 2 [4.4] q0 = 2A ~,T,/" 

Equations (2.14) require that we know p, the radial coordinate of the center of mass, r~. By 
[2.3a], p satifies 

= __I ~e ~ sin e O sin # cos #. 
dt 4"" dp 

[4.5] 

This being the case we put 

r • : ~ ,  [L0'~ 2 1 
qc* = t , ~ ]  ~o= -~, 

= qot, a *  = 6. [4.6] 

This enables us to use [2.14] (for the starred quantities) and to supplement this set of equations 
by the equation for r*, 

d l {R*~' 
dr* r*2 = 2 \ r* ] sin2 0 sin ~b cos ~k. [4.'7] 

Since [4.7] is independent of a*, hydrodynamic interaction does not directly enter into the 
expression for the migration velocity. This, however, does not imply that hydrodynamic 
interaction can be neglected altogether. As emphasized previously, the particle rotation does 
depend upon this interaction. If it is neglected altogether the resulting terminal orientation of 
the dumbbell (~=--0, O®--(~r/2)) is such that no cross-stream migration can result. This is in 
striking contrast to kinetic theory treatments for this type of flow (Sharer et al. 1974, Bird 1979, 
Aubert et al. 1980). Dealing exclusively with a Gaussian spring and neglecting the finite size of 
the spheres (i.e. modeling them as volumeless friction centers, and thus using a* = 0) these 
authors end up with a cross-stream migration in circular Couette flow. Actually the reason is 
not hard to see. With Brownian motion included the forces and couples of [2.2] are non-zero, 
but balanced by Brownian motion forces and couples. This immediately implies that the a* = 0 
dumbbell does not align with the flow and this, by [4.5], necessitates a non-zero migration 
velocity. 
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In our purely hydrodynamic treatment we thus see that a* #0  is still vital for any 
cross-stream migration to occur. But even for a* ~ 0 it is important that the spring is elastic. 
For a rigid dumbbell it is easy to prove, along the same line of reasoning used in section 3, that 
no net migration is possible during the course of one rotation. 

In order to evaluate r* = r*(t*) numerically for elastic springs, it is important to recall that 
r*, as defined by [4.6], is defined as the distance of the center of the particle from the axis of 
the cylinders relative to the unstretched length of the dumbbell. We shall report results only for 
to* = 120, which, for R~ = 2.3 cm, R2--2.5 cm (the system of Shafer et al. 1974) means that a 
dumbbell with Lo*= 0.02 cm is initially halfway between the cylinders. This implies, by [4.6], 
that the local shear rate qc* is of the order of 7 x 10 -5. If [3.3] is used to obtain a (rough) 
estimate for the period of rotation then T* - 5.54 x 104(a*)-L Choosing a* = 0.1 and a* = 0.01, 
respectively, leads to periods of rotation so large that we found it advantageous not to calculate 
r* = r*(t*) but rather r* = r*(4,) (~ increases by 2¢r during the time interval T*). 

This kind of representation requires some care to put the resulting curves into proper 
perspective. Thus, while for elastic dumbbells the migration always is towards the inner 
cylinder (see figures 8-10), i.e. towards the high shear region, a comparison of figures 8(a) with 
8(b) shows that during the course of one rotation, it is the longer dumbbell which has migrated 
most. Only by realizing that the period of rotation varies approximately finearly with the 
particle aspect ratio a *-m does it become clear that during equal time intervals the actual 
migration decreases with decreasing a*. On an order of magnitude basis, this effect is far less 
dramatic than in the channel flow situation (see figure 4). This was to be expected since for 
circular Couette flow the migration velocity does not directly depend upon the particle aspect 
ratio, while for channel flow it is proportional to a .3. 

From the channel flow results we also see that the period of rotation decreases with 
decreasing L* (figure 6). This will to some extent counterbalance the decrease in the migration 
with decreasing L* during one rotation (figure 9). 

Finally, the effect of the parameter a* is shown in figure 10. As found in channel flow, the 
migration is largest if a* is of the same order of magnitude as qc*, i.e. when the elastic response 
time of the dumbbell and the characteristic time of rotation are of the same order. 

5. D I S C U S S I O N  

Elastic dumbbells in non-homogeneous flows have been studied. Concentrating solely upon 
the hydrodynamics of that problem we found deformability and hydrodynamic interaction an 
indispensible prerequisite for any net-migration to take place in viscometric flows. Without 
interaction the orientation of the dumbbell changes aperiodically such that in the terminal 
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Figure 8. Thesdependence of migration on a* during one rotation in circular Couette flow, parameters: 
a j = 1.4x 10-,  L* = 1.6; initial conditions: Oo-- ~'12, 0o = w/2, Ro* = 1, to* = 120, (a) solid line: a* =0.1; 

(b) dashed line: a* = 0.01. 
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Figure 9. The dependence of migration on L* during one rotation parameters: a* = 1.4 x 10-5; a* = 0.1; 
same initial conditions as in figure 8. (a) solid line: L* = 1.6; (b) dashed line: L* -- 1.3. 

orientation attained no migration is possible. With hydrodynamic interaction the dumbbell 
orientation changes periodically and in this case a net migration towards the high shear region 
results in circular Couette flow. On the other hand, in channel flow (and in tube flow) the 
hydrodynamic interaction enters not only into the expression for the change in orientation but 
also into the expression for the change of position. A migration towards the low shear region is 
the consequence. In contrast to the hydrodynamic migration of droplets, which attain a steady 
orientation relative to the streamlines (e.g. Chan et al. 1979), the dumbbells always rotate. Since 
the details of the migration depend upon the instantaneous length and orientation of the particle 
it is clear that any attempt to correlate our predictions with experimental results requires that 
we know the probability to find a dumbbell at time t in some orientation-and-length range. This, 
however, is the subject of a statistical-mechanical treatment, a treatment which will be the 
subject of a separate study. Thus, all we can do for now is to speculate whether the migration 
phenomena can in principle lead to observable effects. 

On an order of magnitude basis the residence time for a particle in tube (or channel) flow is 

21 tR---~ [5.11 

where I is the length of the tube. Since, the time scale for migration ist 

B 3 
tm -- 2Lo2v,sa ,3 ,  [5.2] 

it is clear that no effects are possible unless the restriction 

t---~m -- | ( / )  ( - ~ ) 2 ( L ° / 3  
tR ] ~ "~ 1 [5.3] 

is met. We expect this condition to be violated, since within the limits of and approximations of 
our theory, a* ,~ 1 and (Lo/B) ,~ 1. 

Although disappointing there may be situations of practical si~ificance where an observable 
phenomenon could result. Since the net migration cannot depend upon the direction of flow, a 
periodically varying pressure difference should, if applied long enough, lead to an observable 
effect. 

"t'Note that  in channel  and  tube flow we have  by (2.16) and (3.2) fOR*, a*)  -- a*3f(R*). 
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Figure 10. The dependence of migration on a* during one rotation parameters: a* = 0.1j L* = 1.6; same 
initial conditions as in figure 9. (a) dashed line: a* = 1.4× I0-~; (b) solid line: a* = l a x  10- ; (c) dotted line: 

a* = l a x  10 -~. 

Similarly, for the circular Couette flow time restrictions (such as (5.3)) play no role. In this 
case we directly turn to polymer concentration c(0, t) which satisfies the conservation equation 

with 

O OC C 0 , , ,  
o-+ c + = - p t p , , . u  [5 .4 ]  

z~kR22 | ID2 
vi = 2 ~ ~a sin 2 0 sin ~ cos ~ ) ,  [5.5] 

the ensemble average of the migration velocity (do~dO. Assuming now that outside a particular 
radius Pc the concentration is zero the motion of that outside boundary must move along the 
characteristic curve (po -- pc(t -- 0)) 

f~ + dp [5.6] t =  V±" 

For example, taking po = R2 the time tc (termed clearance time) required for all the molecules to 
have migrated to the inner cylinder is given by 

t° = f"'  de.  [5.7] 
JR2 Vj. 

In order to estimate this clearance time the function v± has to be known. Unfortunately, this 
again requires a rigorous statistical-mechanical treatment. Without it any expression for v± 
must be taken as a conjecture. One possible choice is 

i.e. 

(R 2 sin 20  sin ~ cos ~) = const. Lo2~]c, [5.Sa] 

const. AR~2R22Lo 2 1 
v ±  -- 2 p-~- - . [5.8b] 
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This choice is motivated by three facts: (a) The ensemble average [5.8a] vanishes in 
equilibrium (q, - 0). (b) by using the distribution function 

,~q. [ l + 4-~-~ qcR2Sin2O sin ck cos ck + O(flc2) ], [5.9] 

with 

and 

t [ 1 - / R -  Lo 2] 
*cq. = j \ L i  - Lo /  J 

J = 4# d RR 2 
~-L, [ \ L ~ - t o / J  ' 

[5.10] 

which, for slow flow conditions and qc independent of position is valid for any spring force law 
(Bird et al. 1977),t [5.8a] results. In this case, the constant of [5.8a] turns out to be 

AR22 ~ IR4 ~ 
const  = 30kTR12LoZ X ,~. [5 .u]  

(c) From a statistical-mechanical treatment for Rouse coils and for Zimm coils 

vj. = - ~ ,  ~ = const. [5.12] 

follows, irrespective of the strength of the flow field (Sharer et al. 1974). Note that the constant 
does depend upon the actual choice of the model. 

Thus, we feel that [5.8b] suffices for illustrative purposes. Using this expression in [5.7] 
leads to the clearance time: 

1 (R2 6 -  Rt~)(R2 2 + Rt2)(R2 + Rl) [5.13] tc = . . . .  " 

where Oj. denotes the average of v± over the annular gap. For the values reported by Sharer et 
al. (1974), R~ ffi 2.3 cm, R2 = 2.5 cm together with their calculated value o± = - 3 x-104 cm/sec we 
thus get: 

h = 11.27 rain [5.14] 

The observed clearance time could differ significantly from this estimate (Shafer et al. 0974) 
do not report tc), the reason being that for the spring force [2.12], [5.8b] for v± should only be 
used for slow flow conditions, i.e. ,5 ~, 1. This being the case, Brown[an motion most certainly 
cannot be neglected. Thus, we expect any observed clearance time to exceed tc as given by 
[5.13]. For the extreme case, that Brown[an motion is so strong as to balance the inward radial 
convective flux steady state concentration profiles can be established. Aubert et al. (1980) 
studied exactly this case and reported theoretical results for a Gauss[an chain. 

#More accurately, we should say that up to order ~ 2 only the equilibrium function40,~ depends upon the contlector 
potential, This implies that the equilibrium average (R')~q will be of the form (R')~ = Lo (L*,b) with b = H(L~ - Lo)'12kT. 
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